Problem 5

Evaluate the following limits, if they exist, where $\llbracket x \rrbracket$ denotes the greatest integer function.
(a) $\lim _{x \rightarrow 0} \frac{\llbracket x \rrbracket}{x}$
(b) $\lim _{x \rightarrow 0} x \llbracket 1 / x \rrbracket$

Solution

Below is the graph of the greatest integer function for reference.

Part (a)

Graph the function $\frac{\llbracket x \rrbracket}{x}$ versus x.

Observe that the left-hand and right-hand limits are not equal.

$$
\lim _{x \rightarrow 0^{-}} \frac{\llbracket x \rrbracket}{x}=+\infty \quad \lim _{x \rightarrow 0^{+}} \frac{\llbracket x \rrbracket}{x}=0
$$

Therefore,

$$
\lim _{x \rightarrow 0} \frac{\llbracket x \rrbracket}{x} \text { does not exist. }
$$

Part (b)

The function $x \llbracket 1 / x \rrbracket$ is graphed below over several intervals of x in order to illustrate the function's behavior towards the origin.

Observe that the left-hand and right-hand limits are equal.

$$
\lim _{x \rightarrow 0^{-}} x \llbracket 1 / x \rrbracket=1 \quad \lim _{x \rightarrow 0^{+}} x \llbracket 1 / x \rrbracket=1
$$

Therefore,

$$
\lim _{x \rightarrow 0} x \llbracket 1 / x \rrbracket=1 .
$$

